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Introduction



Background and Research Questions

▶ Since Lucas, Full Information and Rational Expectations have been
a cornerstone of DSGE. However, empirical evidence decisively
rejects the hypothesis of (FIRE) among agents.

▶ Q1. How can we depart from FIRE in a way that is (a)
micro-founded and (b) consistent with such empirical evidence, as
well as (c) flexible enough to handle a number of expectation
formation models?

▶ For HANK to become the workhorse framework of macroeconomics
and policy, it must match key aspects of macro transmission:
micro-jumps (iMPCs) and macro-humps (Auclert et al. 2021).

▶ Q2. Can our model of flexible deviations from FIRE model reduce
persistence and variance of shocks needed to match empirical
transmission relative to extant frameworks (i.e. Sticky expectations,
cf. Albuquerque et al., 2025)? MJMH



Main Contributions

▶ Propose a framework for departing from FIRE building on the
reduced-form model in Kohlhas and Warther (2021). Several
benefits:

1. Integrable with micro and professional forecasters survey data
evidence: overreaction to current conditions and underreaction
to (public) news.

2. Micro-founded in asymmetric attention mechanisms.
3. Flexible, nesting cases including FIRE, Sticky expectations

(Auclert et al., 2021; Gabaix, 2020; Coibion and
Gorodnichenko, 2015), and Diagnostic expectations (Bordalo
et al. 2018).

4. Under suitable parametrisations, near-rationality.
5. Can apply to other agents in the economy, not just households.

▶ We show how to implement this Reduced Form (RF) expectation
process in the Sequence Space in a way equivalent to the
computational framework for deviations from FIRE proposed by
Bardoczy and Guerreiro (2024).



Cont’d

▶ We develop an application to HANK models in the sequence space,
covering implications for macro-transmission and dynamics:

1. Develop and solve under alternative expectation processes
(FIRE, Sticky, RF) a One-Asset and a Two-Asset HANK,
replicating closely features of Auclert et al. 2021.

2. Micro-jumps and Macro-humps under alternative expectation
processes, and how RF mitigates the dampening effect of
sticky expectations on amplification.

▶ ... and business cycle estimation questions:

1. How strong a departure from FIRE and in what direction:
partial information estimation of the RF expectations
parameters by IRF-matching to the empirical IRFs by Romer
and Romer (2024) and Bauer and Swanson (2023)

2. Estimation and amplification questions: Likelihood-Based
estimation of the aggregate shock processes as in Smets and
Wouters (2007) across FIRE, Sticky, and RF expectations.



Outline

1. Theoretical framework and the Kohlhas-Warther (KW)
mapping K : X → X e

2. Implementation in the Sequence Space and constructing the
Sequence-Space Jacobians.

3. Model(s) description: One-Asset and Two-Asset HANK

4. Partial and Full-Info estimation strategies

5. Main results

6. Coming next...



Flexible Deviations from FIRE:
Theoretical Framework



Kohlhas and Warther Reduced Form Expectations

Consider the model for the i-th individual forecast error on an aggregate
input xt+k , k periods ahead time t when the forecast fi,txt+k is formed.

xt+k − fitxt+k = αi + γxt︸︷︷︸
Extrapolation

+ δ(f̄txt+k − f̄t−1xt+k)︸ ︷︷ ︸
News Revision

+εi,t|t+k

▶ Where f̄txt+k =
∫
j
fj,txt+kP(dj) the average forecast.

▶ Coefficients γ and δ denote extrapolation and (public) news
revision. Empirical estimates with US SPF data γ < 0, δ > 0 →
consistent with IRF matching from HANK model?

▶ Note model makes sense ex-post, i.e. conditional on the info set
Ft+k (and super-sets)... sequence space is a natural environment.

▶ Time-invariant here... but not needed as we show.



Cont’d

▶ Nests multiple models, including alternative to the one we propose,
remaining moot/agnostic on sources of informational friction

1. Purely sticky expectations as in Coibion & Gorodnichenko
2015; Auclert et al., 2020: δ > 0, γ = 0.

2. Purely extrapolative or diagnostic expectations in the sense of
Bordalo et al. (2018): γ ̸= 0, δ = 0

3. In RF, coefficient signs micro-founded in limited attention
mechanisms and noisy signals in unobserved component SSMs.

▶ Key next steps for implementation in DSGE models in the
Sequence-Space:

1. Getting the mapping K from actual realised inputs X ∈ XT to
agents’ forecasts X e,τ ∈ XT×T .

2. Using this to pin down the Sequence-Space Jacobian with
behavioural expectations based on the FIRE Jacobian.



The K Mapping as a Recursive LoM for the Forecast

▶ Taking expectations with respect to the measure of agents i , and
re-arranging, ∀t, k :

f̄txt+k = c +
1

1 + δ

(
δf̄t−1xt+k + xt+k − γxt

)
▶ Under a set of technical assumptions view, it can be shown that

at a 1st order perturbation expansion around the steady state:

f̄txt+k = xss +
1

1 + δ

(
δf̄t−1dxt+k − γdxt

)
▶ In Sequence Space, forecast evolution governed by a deterministic

recursive Law of Motion → mapping K : X → X e,t



Cont’d
▶ Made explicit by solving, for all t, k ≤ T , the difference equation

backwards up to the origin of the transition t = 0:

dxe,t
t+k := df̄txt+k =

1

1 + δ

t∑
j=0

(
δ

1 + δ

)t−j

dxt+k︸ ︷︷ ︸
News Effect (underreaction)

− γ
t∑

j=0

(
1

1 + δ

)t−j

dxj︸ ︷︷ ︸
Extrapolation Effect (Overreaction)

▶ Intuition. In Sequence Space, all uncertainty on future paths gets
resolved at time zero. Shocked input dxt+k becomes part of the full
information set. How does this transmit to forecasts under FIRE
and RF Models?

1. News Effect with δ > 0: delayed response... macro humps as
in Sticky Expectations

2. Extrapolation Effect with γ < 0: amplification/larger response
on impact.

▶ Linear mapping... fast implementation in DSGE solvents through
manipulation of the FIRE Jacobian Mapping

dXe,τ = KτdX



RF Jacobian as a function of the FIRE Jacobian

▶ We employ a procedure that we show to be equivalent to Bardoczy
and Guerreiro’ (2024) generalisation of the SSJ method proposed
for FIRE environments by Auclert et al. (2021).

▶ DSGE Model cast as a Sequence-Space Equilibrium in DAG form.
Square ”Target Block”:

F(U,Z) = 0

dU = F−1
U FZ︸ ︷︷ ︸

Gen. Eq. Jacobian G

dZ

dX = S−1
X SU︸ ︷︷ ︸

Part. Eq. Jacobian wrt X

dX+ S−1
X SZ︸ ︷︷ ︸

Part Eq. Jacobian wrt Z

dZ

▶ DAG formulation → break G−finding problem into sequence of
smaller problems solving for Partial Eq. Jacobian.

▶ In HANK, key object is response of (heterogeneous) agents to
shocks to the inputs: (heterogeneous) agent block Jacobian (as
dXt → 0):

J̃ = [dYt/dXs ](t,s)∈T 2

▶ Fast construction through Fake-News matrix...



Cont’d

▶ Let’s tie things together. Deviations from FIRE → forecast
aggregate inputs are inputs to the household DP problem.

▶ To derive the Jacobian J̃, procedure is equivalent to Bardoczy and
Guerreiro’ (2024) generalisation of the SSJ method to non-FIRE
environments.

▶ Under linearity of the Kohlhas-Warther mapping, the Jacobian J̃
can as a function of J and parameters of the K mapping:

J̃ = JK0 +
T∑

h=1

Rh(Kh −Kh−1)

where Rh =

(
0 0

′

h

0h J

)
▶ What’s the intuition? Faster



Sequence-Space DSGE Solvent with RF Expectations

▶ Pulling together, the proposed DSGE solvent with RF expectations
(and nested cases!) is:

dU = F−1
U FZdZ

dU = [J̃S−1
X SU ]

−1FZdZ

dU =

[(
JK0 +

T∑
h=1

Rh(Kh −Kh−1)

)
S−1
X SU

]−1

FZ︸ ︷︷ ︸
Gen. Eq.Jacobian with Flexible Deviations from FIRE

dZ

▶ Solvent collapses to FIRE solvent when consistently we set

K0 = Ks = I,∀s.

▶ Next. Application to transmission and estimation in HANK
environments



Applications to HANK in the
Sequence Space



Overview

We propose a number of applications of the expectations model and
solvent to transmission and estimation in HANK environments. In
particular:

1. Role of behavioural parameters in relative reaction to and
amplification of aggregate shocks:

▶ matching micro-jumps (iMPCs) and macro-humps.
▶ Consistency with empirical estimates γ < 0, δ > 0
▶ Decomposition of Business Cycle into extrapolative and

news-revision components.

2. Performance in matching empirical IRFs relative to nested Sticky
and FIRE models

▶ Romer & Romer (2004) Jordà LPs
▶ Bauer and Swanson (2023) Proxy VAR

3. Business Cycle estimation: explaining variance of macro-series with
Smets and Wouters (2007) shocks specification.



HANK Environments

▶ Applications currently explored in a set of HANK models:

1. One-Asset HANK model with aggregate investment and a
consolidated asset in the spirit of MHMJ Auclert et al. (2020)
and Auclert et al. (2024)

2. A ”Two-Asset” HANK model with permanent heterogeneity,
aggregate investment, and illiquid assets closely replicating
MHMJ Auclert et al. (2021)

3. The UK HANK model with housing by Albuquerque et al.
(2025)

▶ Model outline and estimation methods

▶ Preliminary Results and Findings



The MJMH Two-Asset HANK
Households

▶ Permanent heterogeneity on HH side to match features of wealth
and income inequality in US → key for micro-jumps...

1. Six groups or fixed types with exogenous density (btm 50% to
top 5% matching quantiles of the illiquid distribution of wealth
(US SFC 2013).

2. Group-Level differences in steady state (1) illiquid asset shares,
(2) discount factors, (3) average skill level/efficient labour
units.

For each group j ∈ {1, ..., 6}:
Vt(lt−1, at−1, zt , jt ;Xt) = u(ct , nt) + βjEtVt+1(lt , at , zt+1, jt+1;Xt+1)

ct + lt = (1 + r lt )at−1 + (1− τt)wtnt z̄j z̃ + xt + dt(at−1, r
a
t , j)

at = (1 + rt)at−1 − dt(at−1, rt , j)

dt(at−1, rt , j) =
r ass

1 + r ass
(1 + r at )at−1 + χ[(1 + rt)at−1 − (1 + r ass)āj ]

▶ Idiosyncratic Transition Matrix/Markov Kernel?

Π((zt , jt), (zt+1, jt+1))
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Aggregate Investment

▶ Convex (deadweight) adjustment costs and time-to-build.

▶ Capital firm (K-Firm) plans optimal investment at t to be carried
out tomorrow, and financed out of revenue from renting out stock
final good firm (Y-firm).

▶ Maximises shareholder value / value of the firm.

1. Kt = It−1 + (1− δ)Kt−1

2. Optimal It and Tobin’s Q pinned down by Q-theory equations.

Financial Side and Asset Markets

▶ Mutual fund collects liquid and illiquid deposits, with (deadweight)
intermediation costs on former.

▶ Invests in gov’t bonds, and shares in K -firm and Y−firm Fund



Calibration

▶ We follow the (quarterly) calibration of untargeted steady
state parameters and aggregates in Auclert et al. 2020 –
others estimated by IRF matching (Eichengreen, Christiano,
and Evans, 2005).

▶ HH: income process uses the Kapman-Moll-Violante spec,
suitably rescaled to match:

1. Income shares of the illiquid asset groups (2013 US SFC)
2. Progressive income taxation HSV, 2017

▶ Targeted parameters include discount factor of bottom 50%
(Group 1) to match illiquid asset holding shares, and
K-elasticity of output to match US capital stock at asset
market clearing.



Steady State

▶ Aggregate targets replicate the MJMH steady state almost
perfectly. Steady State

▶ Micro Jumps: iMPCs

▶ Next. Transmission and Dynamics under RF and nested
models with estimated parameters (23).



Estimation Methods and Routines: Partial Info Estimation

▶ For now, two-step procedure as in MJMH.

▶ Partial Information Estimation for IRF Matching

1. Romer & Romer (2004) MP Shocks

1.1 Jordà Linear Local Projections → ”Empirical IRFs”
1.2 Target ”dynamic” parameters, including behavioural ones, to

minimise loss of models IRFs relative to LP IRFs.
1.3 Redform and nested Sticky, FIRE models (as restrictions)

2. Ongoing... Bauer & Swanson (2023) MP Shocks BS IRFs

2.1 Proxy-VAR Model
2.2 As Above

▶ Targeted Dynamic Parameters: Extrapolation γ, News Revision
δ, Taylor Rule Inertia, Adj. Costs curvature, calvo probability
NKPC-p, calvo probability NKPC-w, Taylor Rule coefficient.

▶ Groundwork for the BC decomposition exercise.



Estimation Methods and Routines: Business Cycle
Estimation

▶ Full Information or Likelihood-Based Estimation against Business
Cycle Data for Smets & Wouters (2007) ”VARMA” aggregate
shocks

1. HH Discount factor (AR1), risk premium (AR1), monetary
policy shock (AR1), fiscal expenditure shock (AR1), TFP
shock (AR1), NKPC-p cost-push shock (ARMA11), NKPC-w
cost push shock (ARMA11)

2. AR and MA coefficients + standard deviations = 16
parameters.

3. Priors identical to Smets and Wouters (2007) and Auclert et
al. (2021)

▶ Estimation framework ”semi-Bayesian”: maximisation of
Posterior-Likelihood P(Θ|Y) ∝ L(Y|Θ)P(Θ) → ”Mode-Search” +
Laplace Approximation for credible sets. LLF

▶ Numerical optimisation: Nelder-Mead

▶ Probabilistic or MCMC-style optimisation: Simulated Annealing



Main (Current) Results from
Estimation and Applications



Business Cycle Decomposition: Macro-Humps

Expansionary MP Shock

Expansionary TFP Shock



IRF Matching: Dynamic Parameter Estimates

▶ Coefficient signs in line with micro-foundations and SPF empirical
evidence in Kohlhas & Warther (2021)

▶ Interaction between Extrapolation and News channels

Dynamic Parameter RF Sticky FIRE
Extrapolation γ -0.471 - -
News Revision δ 16.649 9.209 -

Adj. Cost Curvature 5.015 5.036 5.011
Taylor Rule Inertia 0.763 0.764 0.687
Taylor Rule Coeff. 1.057 1.645 1.305
Calvo-Prob (Prices) 0.956 0.987 0.990
Calvo-Prob (Wage) 0.950 0.941 0.916

IRF Loss 0.706 0.742 1.132



IRF Matching to Romer & Romer



Cont’d



Smets & Wouters Shocks Estimation

Shock Process Parameter RF Sticky Priors

Discount Factor AR 0.216 0.025 Beta(0.5, 0.2)
sd 2.443 4.300 Invgamma(0.1, 2)

Risk Premium AR 0.588 0.596 Beta(0.5, 0.2)
sd 6.036 4.807 Invgamma(0.1, 2)

Monetary Policy AR 0.427 0.670 Beta(0.5, 0.2)
sd 0.010 0.009 Invgamma(0.1, 2)

Fiscal Expenditure AR 0.974 0.904 Beta(0.5, 0.2)
sd 0.301 0.381 Invgamma(0.1, 2)

Productivity (TFP) AR 0.220 0.424 Beta(0.5, 0.2)
sd 0.001 0.168 Invgamma(0.1, 2)

Cost-Push NKPC-p AR 0.637 0.956 Beta(0.5, 0.2)
sd 0.001 0.0004 Invgamma(0.1, 2)
MA 0.861 0.613 Beta(0.5, 0.2)

Cost-Push NKPC-W AR 0.031 0.991 Beta(0.5, 0.2)
sd 0.274 0.555 Invgamma(0.1, 2)
MA 0.640 0.991 Beta(0.5, 0.2)

Shock Process Estimates on SW Data.
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Metric RF Sticky
Optimised Log-Likelihood 4372.986 2335.606
Combined Shock Variance 63.883 112.735

Shock Process Estimates on SW Data: Key Statistics.



Summary and Next
Summing up:

▶ Propose a flexible, structured framework for departing from FIRE
building on the reduced-form model in Kohlhas and Warther (2021),
consistent with macro, micro-foundations, and empirical evidence.

▶ Implementation of the RF expectations in the Sequence Space and
RF Solvent.

▶ Application to HANK models in the sequence space, covering
implications for macro-transmission and dynamics:

1. Develop and solve under alternative expectation processes
(FIRE, Sticky, RF) a One-Asset and a Two-Asset HANK,
replicating closely features of Auclert et al. 2021.

2. Micro-jumps and Macro-humps under alternative expectation
processes, and how RF mitigates the dampening effect of
sticky expectations on amplification.

3. Partial information estimation of the RF expectations
parameters by IRF-matching to the empirical IRFs.

4. Likelihood-Based estimation of the aggregate shock processes
as in Smets and Wouters (2007) across FIRE, Sticky, and RF
expectations.
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Next:

▶ Refine partial and full info estimation; speed up RF solvent.

▶ Forecast error simulations and decompositions, similar to BC ones.

▶ More work on the Bauer & Swanson IRF matching

▶ Fully Bayesian estimation

▶ ... policy questions?



Thank you!
Jamie.Lenney@bankofengland.co.uk

br421@cam.ac.uk



Micro-Jumps and Macro-Humps

Fig. 1 in MJMH by Auclert et al., 2020

Back



Assumptions for Recursive Forecast LoM
Ensure internally rational agents (Adam and Marcet, 2011)

1. No Bias along the Steady State path

c :=
1

1 + δ

∫
ajP(dj) =

1

1 + δ
γxss →

∫
ajP(dj) = γxss

2. A Law of Iterated Expectations holds, ∀t, s with s = t − r , r ≥ 0, so
that agents do not expect or forecast their own forecast errors
(these are orthogonal to their information set at the time
expectations are formed):

f̄s [f̄txt+k ] = f̄s [xt+k − ϵt+k|t ] = f̄sxt+k = f̄sxs+r+k

3. For large enough T , agents expect the forecast variable to return to
the steady state Bardoczy and Guerreiro, 2024:

∃T ∈ R+ : ∀t ≤ T f̄txT = xT = xss = f̄ss x̄ss

4. News revision coefficient δ > 0, which is sufficient to guarantee
stability of the law of motion for the forecast in the sequence space
around the steady state forecast.



The Linear Kt Mapping

K0 =



1 0 0 0 · · · 0
−γ
1+δ

1
1+δ

0 0 · · · 0
−γ
1+δ

0 1
1+δ

0 · · · 0
−γ
1+δ

0 0 1
1+δ

· · · 0
...

...
...

...
. . .

...
−γ
1+δ

0 0 0 · · · 1
1+δ


More generally, we show for τ ≤ T

Λk =

(
Ik+1 0(k+1)×(T−(k+1))

Ak Bk

)

where Ak(i,j) =

{
−γδk−j

(1+δ)k−j+1 for j = 0, 1, . . . , k

0 otherwise
,

Bk(i,j) =

{∑k
l=0

δl

(1+δ)l+1 i = j

0, i ̸= j



Faster Implementation

▶ Practically, faster to work with just the FIRE Fake-News matrix, a
more primitive object than the Jacobian.

Ĵt,r =
∂Yi,t

∂Xs
=

dYi,t

dXs
= Ft−r ,0+

t−1∑
τ=0

T∑
s=0

Ft−τ,s−τKτ,s,r+
T∑

s=t+1

F0,s−tKt,s,r

Back



Mutual Fund and Asset Pricing

▶ Funds clearing:

(1+δqt)Bt−1+(pkt +dk
t )+(pyt +dy

t ) = (1+r lt )Lt−1+(1+r at +ξ)At−1

▶ Implying the asset pricing/no arbitrage conditions

Etrt+1 = Etr
a
t+1 = Et [r

l
t+1 + ξ]

Et

(
d i
t+1 + pit+1

pit
− (1 + rt+1)

)
= 0

Et

(
1 + δqt+1

qt
− (1 + rt+1)

)
= 0

Back



Steady State Tables

Back



Steady State Tables
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Steady State Tables
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Bauer & Swanson IRFs (Unmatched)

One-Asset Model vs Bauer and Swanson (2023) Proxy-VAR IRFs,
RF-expectations and nested solvents

Back



How to build the LLF L(Y|Θ) in Sequence Space
State-Space → Kalman Filter.

How about the Sequence-Space? Auclert et al. 2021

Sequence Space Covariance Matrix (T × T × Nobs)

1. Simulation based from 1 std pulse at origin

dU =

[(
JK0 +

T∑
h=1

Rh(Kh −Kh−1)

)
S−1
X SU

]−1

FZ︸ ︷︷ ︸
Gen. Eq.Jacobian with Flexible Deviations from FIRE

dZk

2. Using MA(∞) representation of the Gaussian shock process

dZt =
∞∑
j

M j
ZdZ̃t−j

3. Get covariance matrix Σ of Y from above

4. Sequences Y are multivariate normal with mean zero and covariance
matrix Σ.

Back
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